In-Sun Song' Page

Contact, academic and career information


This page describes In-Sun’s contact info, careers, research interest, lectures (and syllabus), recent research projects, and publication list.

Contact

  • Name: In-Sun Song
  • Work: Department of Atmospheric Sciences, Yonsei University
  • Office: Room 548, Science Hall, Seodaemun-gu, Seoul, Korea, 03722
  • Phone: +82-2-2123-XXXX
  • Email: songi@yonsei.ac.kr

Career

  • Department of Atmospheric Sciences, Yonsei University (MAR 2021 -)
  • Korea Polar Research Institute (APR 2015 - FEB 2021)
  • Korea Institute of Atmospheric Prediction Systems, Korea Meteorological Administration (MAY 2011 - APR 2015)
  • Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, USA (FEB 2007 - APR 2011)
  • Institute of Natural Sciences, Yonsei University (MAR 2005 - FEB 2007)

Research Interest

  • Global structure of atmospheric wave phenomena
    • Tidal, Rossby and mesoscale waves and their impacts in the upper atmosphere
    • Energy transfer from the large-scale flow to the mesoscale wave regime
    • Low-frequency (near-inertial) waves in the upper atmosphere
    • Free Rossby waves and forced Rossby waves of mesoscale origin
  • Middle and upper atmosphere global modeling
    • Idealized whole atmosphere general circulation modeling
    • Global whole atmosphere and chemical simulations using WACCM (or WACCM-X)
    • Top-down effects of solar-cycle UV variations on climate variability
    • Roles of atmospheric wave dynamics in the top-down effects
  • Dynamical processes and numerics in global atmospheric models
    • Spherical harmonic (SI-SL) or spectral element dynamical core
    • Horizontally structured (lat-long) or unstructured (cubed-sphere) grid
    • Vertical grid structure, internally-generated QBO, and energy spectra
    • Efficient parallel computation and communication

Lectures

  • Upper Atmosphere (고층대기)
  • Applied Mathematical Methods in Atmospheric Sciences (기상응용수학)
  • Computer (Fortran) programming (전자계산2)

Recent research projects

  • Next generation space environment prediction and research funded by Korea Astronomy and Space Science Institute (KASI) (2021-)
  • Investigation of correlation between occurrence of aurorae and upper-atmospheric disturbances and climate variability funded by Korea Polar Research Institute (KOPRI) (2020-)
  • Impacts of solar cycle variations in the polar and global climate variability funded by Korea Polar Research Institute (KOPRI) (2018-2020)
  • Research for development of technologies for space weather funded by National Meteorological Satellite Center (NMSC), Korea Meteorological Administration (KMA) (2017-2019)

Publications

  • Author in italic: Corresponding author
  1. Song, B.-G., Song, I.-S., Chun, H.-Y., & Lee, C. (2021). Gravity wave activities in the upper mesosphere at King Sejong Station, Antarctica (62.22S, 58.78W) and their potential sources in the lower atmosphere. Journal of Geophysical Research: Atmospheres (Submitted)
  2. Lee, W., Song, I.-S., Kim, J.-H., Kim, Y. H., Jeong, S.-H., Eswaraiah, S., & Murphy, D. J. (2020). The observation and SD-WACCM simulation of planetary wave activities in the upper atmosphere during the 2019 Southern Hemisphere sudden stratospheric warming. Journal of Geophysical Research: Space Physics (Submitted).
  3. Lee, J.-H., Jee, G., Kwak, Y.-S., Hwang, H., Seppala, A., Song, I.-S., Turunen, E., & Lee, D.-Y. (2021). Polar middle atmospheric responses to medium energy electron (MEE) using numerical model simulations. Atmosphere (Accepted)
  4. Song, B.-G., Chun, H.-Y., & Song, I.-S. (2020). Role of gravity waves in a vortex-split sudden stratospheric warming in January 2009. Journal of the Atmospheric Sciences, 77(10), 3321-3342. https://doi.org/10.1175/JAS-D-20-0039.1
  5. Song, I.-S., Lee, C., Chun, H.-Y., Kim, J.-H., Jee, G., Song, B.-G., & Bacmeister, J. T. (2020): Propagation of gravity waves and its effects on pseudomomentum flux in a sudden stratospheric warming event. Atmospheric Chemistry and Physics, 20(12), 7617-7644. https://doi.org/10.5194/acp-20-7617-2020
  6. Yoo, J.-H., Song, I.-S., Chun, H.-Y., & Song, B.-G. (2020). Inertia-gravity waves revealed in radiosonde data at Jang Bogo Station, Antarctica (74o37’S, 164o13’E): 2. Potential sources and their relation to inertia-gravity waves. Journal of Geophysical Research: Atmospheres, 125(7), e2019JD032260. https://doi.org/10.1029/2019JD032260
  7. Kim, Y.-H., Kiladis, G. N., Albers, J. R., Dias, J., Fujiwara, M., Anstey, J. A., Song, I.-S., Wright, C. J., Kawatani, Y., Lott, F., & Yoo, C. (2019). Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses. Atmospheric Chemistry and Physics, 19(15), 10027-10050. https://doi.org/10.5194/acp-19-10027-2019
  8. Yoo, J.-H., Choi, T., Chun, H.-Y., Kim, Y.-H., Song, I.-S., & Song, B.-G. (2018). Inertia-gravity waves revealed in radiosonde data at Jang Bogo Station, Antarctica (74o37’S, 164o13’E): 1. Characteristics, energy and momentum Flux. Journal of Geophysical Research: Atmospheres, 123(23), 13305-13331. https://doi.org/10.1029/2018JD029164
  9. Lee, J.-H., Jee, G., Kwak, Y.-S., Hong, S.-B., Hwang, H.~J., Song, I.-S., Lee, Y.-S., Turunen, E., & Lee, D.-Y. (2018). Responses of nitrogen oxide to high-speed solar wind stream in the polar middle atmosphere. Journal of Geophysical Research: Space Physics, 123(11), 9788-9801. https://doi.org/10.1029/2017JA025161
  10. Lee, C., Kim, J.-H., Jee, G., & Song, I.-S. (2018). Meteor echo height ceiling effect and the mesospheric temperature estimation from meteor radar observation. Annales Geophysicae, 36(5), 1267-1274. https://doi.org/10.5194/angeo-36-1267-2018
  11. Song, I.-S., Chun, H.-Y., Jee, G., Kim, S.-Y., Kim, J., Kim, Y.-H., & Taylor, M. A. (2018). Dynamic initialization for whole-atmospheric global modeling. Journal of Advances in Modeling Earth Systems, 10(9), 2096-2120. https://doi.org/10.1029/2017MS001213
  12. Song, I.-S., Byun, U.-Y., Hong, J., & Park, S.-H. (2018). Domain-size and top-height dependence in regional predictions for the Northeast Asia in spring. Atmospheric Science Letters, 19(1), e799. https://doi.org/10.1002/asl.799
  13. Lee, C., Jee, G., Wu, Q., Shim, J. S., Murphy, D., Song, I.-S., Kwon, H.-J., Kim, J.-H., & Kim, Y. H. (2017). Polar thermospheric winds and temperature observed by Fabry-Perot interferometer at Jang Bogo Station, Antarctica. Journal of Geophysical Research: Space Physics, 122(9), 9685-9695. https://doi.org/10.1002/2017JA024408
  14. Song, I.-S., Lee, C., Kim, J.-H., Jee, G., Kim, Y.-H., Choi, H.-J., Chun, H.-Y., & Kim, Y. H. (2017). Meteor radar observations of vertically propagating low-frequency inertia-gravity waves near the southern polar mesopause region. Journal of Geophysical Research: Space Physics, 122(4), 4777-4800. https://doi.org/10.1002/2016JA022978
  15. Kam, H., Jee, G., Kim, Y., Ham, Y.-B., & Song, I.-S. (2017). Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2oS, 58.8oW). Journal of Atmospheric and Solar-Terrestrial Physics, 155, 86-94, https://doi.org/10.1016/j.jastp.2017.02.006
  16. Lee, C., Kim, J.-H., Jee, G., Lee, W., Song, I.-S., & Kim, Y. H. (2016). New method of estimating temperatures near the mesopause region using meteor radar observations. Geophysical Research Letters, 43(20), 10580-10585. https://doi.org/10.1002/2016GL071082
  17. Kim, Y.-H., Chun, H.-Y., Park, S.-H., Song, I.-S., & Choi, H.-J. (2016). Characteristics of gravity waves generated in the jet-front system in a baroclinic instability simulation. Atmospheric Chemistry and Physics, 16(8), 4799-4815. https://doi.org/10.5194/acp-16-4799-2016
  18. Hurwitz, M. M., Oman, L. D., Newman, P. A., & Song, I.-S. (2013). Net influence of an internally generated quasi-biennial oscillation on modelled stratospheric climate and chemistry. Atmospheric Chemistry and Physics, 13(5), 12187-12197. https://doi.org/10.5194/acp-13-12187-2013
  19. Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., Eichmann, A., & Chang, Y. (2012). The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2012-104606, 28. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011790.pdf
  20. Garfinkel, C. I., Molod, A., Oman, L. D., & Song, I.-S. (2011). Improvement of the GEOS-5 AGCM upon updating the air-sea roughness parameterization. Geophysical Research Letters, 38(18), L18702, https://doi.org/10.1029/2011GL048802
  21. Hurwitz, M. M., Song, I.-S., Oman, L. D., Newman, P. A., Molod, A. M., Frith, S. M., & Nielsen, J. E. (2011). Response of the Antarctic stratosphere to warm pool El Nino events in the GEOS CCM. Atmospheric Chemistry and Physics, 11(18), 9659-9669. https://doi.org/10.5194/acp-11-9659-2011
  22. Jeon, J.-H., Hong, S.-Y., Chun, H.-Y., & Song, I.-S. (2010). Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pacific Journal of Atmospheric Sciences, 46(1), 1-10. https://10.1007/s13143-010-0001-8
  23. Choi, H.-J., Chun, H.-Y., & Song, I.-S. (2009). Gravity wave temperature variance calculated using the ray-based spectral parameterization of convective gravity waves and its comparison with Microwave Limb Sounder observations. Journal of Geophysical Research: Atmospheres, 114(D8), D08111. https://doi.org/10.1029/2008JD011330
  24. Song, I.-S., & Chun, H.-Y. (2008). A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. Journal of the Atmospheric Sciences, 65(4), 1204-1224. https://doi.org/10.1175/2007JAS2369.1
  25. Chun, H.-Y., Choi, H.-J., & Song, I.-S. (2008). Effects of nonlinearity of convectively forced internal gravity waves: Application to a gravity wave drag parameterization. Journal of the Atmospheric Sciences, 65(2), 557-575. https://doi.org/10.1175/2007JAS2255.1
  26. Choi, H.-J., Chun, H.-Y., & Song, I.-S. (2007). Characteristics and momentum flux spectrum of convectively forced internal gravity waves in ensemble numerical simulations. Journal of the Atmospheric Sciences, 64(10), 3723-3734. https://doi.org/10.1175/JAS4037.1
  27. Song, I.-S., Chun, H.-Y., Garcia, R. R., & Boville, B. A. (2007). Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization: Part II: Impacts in a GCM (WACCM). Journal of the Atmospheric Sciences, 64(7), 2286-2308. https://doi.org/10.1175/JAS3954.1
  28. Chun, H.-Y., Goh, J.-S., Song, I.-S., & Ricciardulli, L. (2007). Latitudinal variation of convective source and propagation of condition of inertio-gravity waves in the tropics. Journal of the Atmospheric Sciences, 64(5), 1603-1618. https://doi.org/10.1175/JAS3891.1
  29. Chun, H.-Y., Song, I.-S., & Baik, J.-J. (2006). Seasonal variations of gravity waves revealed in rawinsonde data at Pohang, Korea. Meteorology and Atmospheric Physics, 93(3-4), 255-273. https://doi.org/10.1007/s00703-005-0164-5
  30. Chun, H.-Y., Song, I.-S., & Horinouchi, T. (2005). Momentum flux spectrum of convectively forced gravity waves: Can diabatic forcing be a proxy for convective forcing? Journal of the Atmospheric Sciences, 62(11), 4113-4120. https://doi.org/10.1175/JAS3610.1
  31. Song, I.-S., & Chun, H.-Y. (2005). Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization: Part I. Theory. Journal of the Atmospheric Sciences, 62(1), 107-124. https://doi.org/10.1175/JAS-3363.1
  32. Chun, H.-Y., Song, I.-S., Baik, J.-J., & Kim, Y.-J. (2004). Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. Journal of Climate, 17(18), 3529-3546. https://doi.org/10.1175/1520-0442(2004)017<3530:IOACFG>2.0.CO;2
  33. Song, I.-S., Chun, H.-Y., & Lane, T. P. (2003). Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. Journal of the Atmospheric Sciences, 60(16), 1960-1980. https://doi.org/10.1175/1520-0469(2003)060<1960:GMOCFI>2.0.CO;2
  34. Chun, H.-Y., Song, I.-S., & Baik, J.-J. (1999). Some aspects of internal gravity waves in the multicell-type convective system. Meteorology and Atmospheric Physics, 69(3-4), 205-222. https://doi.org/10.1007/BF01030422